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Do Fuzzy Quantum Structures Exist? 

R a d k o  M e s i a r  1 

Received March 28, 1995 

Recently, some fuzzy quantum structures were introduced. We focus on the fuzzy 
quantum logics arising from the isomorphism of some quantum logics and some 
systems of fuzzy subsets of the ordering sets of states. In general, a fuzzy quantum 
logic is equipped with the pointwise-defined fuzzy connectives generated by a 
common generator g. Stressing the pointwise nature of fuzzy structures and 
omitting the global properties of quantum elements, we find that only crisp values 
of elements of a fuzzy quantum logic are allowed. Consequently, fuzzy quantum 
structures do not exist! However, there exist quantum structures of fuzzy subsets. 

1. I N T R O D U C T I O N  

Fuzzy sets in the framework of quantum mechanics were introduced by 
several authors (e.g., Aerts et al., 1992; Dvure~enskij and Rie~an, 1991; 
Pykacz, 1987). The pointwise nature of fuzzy sets and the fuzzy connectives 
does not fit the global nature of the quantum structures, e.g., of the quantum 
logics and the quantum connectives. This is, e.g., the case of fuzzy quantum 
spaces of Dvure~enskij and Rie~an (1991), whose elements are, up to an 
isomorphism (Navara, n.d.), quasi crisp sets of  Aerts et al. (1992) (i.e., their 
range is {0, 1/2, 1 }, but the probability of  values 1/2 is zero). 

Recently, Pykacz (1992, 1994) introduced the notion of a (generalized) 
fuzzy quantum logic using the notation of fuzzy set theory only. Pykacz's  
approach was based on the Maczyfiski (1974) theorem proving that any 
quantum logic ~ with an ordering set of  states 90 can be isomorphically 
represented in the form of a special family ~ ( 9  ~ of fuzzy subsets of  5~; see 
Section 2. In Section 3 we discuss the case of  a general system of fuzzy subsets 
of some universe X equipped with pointwise-defined fuzzy connectives, as 
a quantum logic in the traditional sense (Beltrametti and Cassinelli, 1981). 
Finally, we consider fuzzy quantum logics from the fuzzy set point of  view. 
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This means  that we require that a restriction of  a fuzzy structure (hence of  
a fuzzy quantum logic, too) to a subuniverse Y of  X should preserve the type 
of  the underlying structure. 

2. F U Z Z Y  Q U A N T U M  L O G I C S  

Let  ~ be a quantum logic (Beltrametti  and Cassinelli, 1981), i.e., an 
or thocomplemented  cr-orthocomplete or thomodular  poset, and let 5r be any 
nonempty  sys tem of  states (~-addit ive probabil i ty measures)  on ~s (e.g., 
Maczy6ski ,  1974). For  an element a e ~ we introduce a fuzzy subset ~b(a) 
= A of  b ~ putting 

A(s) = s(a), s E Se (1) 

Recall that a fuzzy subset F of  90 is a mapping  F: 5? ~ [0, 1], and that the 
sys tem ~(5?) of  all fuzzy subsets o f  b ~ can be treated as a power  set, ~ ( f f )  
= [0, 1] ~ (Zadeh, 1965). 

It is easy to show that the system ~ ( 9  ~) = {A ~ if(b~ 3a  E 3?, A =- 
s fulfills the following two properties: 

(F1) 5f(9 ~ contains the smallest  e lement  of  ~(Se), 0~ = ~b(0) E ~(Se). 
(F2) 37(5?) is closed under the standard fuzzy complementa t ion  

(Zadeh, 1965) 

A = ~b(a) e 37(S) ~ A'  = l~e - A = ~b(a l )  e 37(5e) 

Further, suppose that 9 ~ is an ordering set of  states on 37 (Maczyfiski,  1974), 
i.e., if for two elements  a, b e 37 one has s(a) --- s(b) for all s e 9 ~, then a 
-- b. Then the next two properties are fulfilled in 3?(5e): 

(F3) A ~ ~ ( ~ ) , A - < A '  ~ A  = 0~. 
(F4) {An} C ~(Se), A~ A Am = 0~ whenever  n v ~ m ~ UA,, E ~(Se), 

where N and U are the bold fuzzy connectives of  Giles (1976). 

Note that the usual order on [0, 1] induces the partial order on fuzzy subsets 
of  ~ ,  i.e., A --< A'  iff A(s) --< A'(s)  for all s E ~ .  Let  A = qb(a). Then A --< 
A'  is equivalent  to s(a) -< s (a i ) ,  which implies a ----- a -L. But then 0 = a / x  
a • = a and consequently A = qb(0) = 0~. 

Further, (F4) corresponds to the ~-or thocomple teness  of  3?. Let {An } = 
{~b(an)}. The  sequence {an} is mutually orthogonal  if and only if for all n 
:# m one has s(a~) -< S(ani,) = 1 - s(a,n) for  each s ~ b ~ i.e., iff n ~ m 
implies An f-) An, = max(0, An + Am - 1) = 0y, where 73 is the bold 
intersection of  fuzzy sets introduced by Giles (1976). The cr-orthocomplete- 
hess o f ~  ensures a = (v  an) E 37 and s(a) = E s(an) ~ 1 for  each s E 5 ~ 
But then A = s ~ 37(S) a n d A  = E s = E An = min(1, E An) = U 
An, where U is the bold union of  fuzzy sets introduced by Giles (1976). 
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Conversely, a system ~ C ~(X) of fuzzy subsets of given universe X 
fulfilling (F1)-(F4) was called by Pykacz (1994) a fuzzy quantum logic. Note 
that the earlier notion of a fuzzy quantum logic (Pykacz, 1992) was defined 
by means of an algebraic sum, which is not a fuzzy connective. This was a 
consequence of a direct application of Maczyfiski's theorem, which was 
formulated for systems of functions (and not for fuzzy subsets). 

Remember that the intrinsic partial order on 5s induces the join and 
the meet on ~(fr If we want to replace v and ^ by U and N and to preserve 
the properties of quantum logics, we have to show the coincidence v = U 
and ^ = N on ~(Se). Note that the join v is not the usual Zadeh (1965) 
fuzzy union (which is defined as a pointwise maximum), but it is the least 
upper bound in ~(9~ The main result of Pykacz (1994) solves the above 
problem. 

Theorem 1. Each fuzzy quantum logic ~ is a quantum logic in the 
traditional sense, i.e., ~ C ~(X) fulfilling (F1)-(F4) is an orthocomplemented 
~r-orthocomplete orthomodular poset with respect to the standard fuzzy set 
partial order, standard fuzzy complement (as orthocomplement), and bold 
fuzzy connectives (as the join and the meet). [] 

3. g-FUZZY QUANTUM LOGICS 

Pykacz's results have led to the following problem: which systems of 
fuzzy subsets of a given universe X equipped with fuzzy connectives of 
complement, union, and intersection can be treated as quantum logics? Fuzzy 
connectives are built up pointwise by means of some operations on the unit 
interval. Namely, the fuzzy complement A c arises from a unary operation c 
which is an order-reversing involution on [0, 1], 

At(x) = c(x), x ~ X (2) 

By Trillas (1979), for each such e there is a generator g (not unique!), 
g: [0, 1] --~ [0, 1] is an increasing bijection, so that 

c(u) = g-l(1 - g(u)), u ~ [0, 1] (3) 

The fuzzy union U is induced by a t-conorm S and the fuzzy intersection n 
is induced by a t-norm T, 

(a U B)(x) = s(a(x), B(x), 

(A N B)(x) : T(A(x), B(x)), x e X (4) 

Triangular norms and conorms are associative, commutative, nondecreasing 
binary operations on [0, 1] with unit element 1 or 0, respectively. For more 
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details see Schweizer and Sklar (1983). S and T are supposed to fulfill the 
DeMorgan laws, i.e., 

S(u, v) = e(T(c(u), e(v))), u, v ~ [0, 1] (5) 

Examining the axioms of a traditional quantum logic taking the fuzzy comple- 
ment as the orthocomplement, the join as the fuzzy union, and the meet as 
the fuzzy intersection, we come to the following result (Mesiar, 1993b): 

There is a generator g such that for all u, v E [0, 1] one has 

e(u) = g-l(1 - g(u)) 

S(u, v) = g-l(min(1, g(u) + g(v))) 

T(u, v) = g-l(max(g(u) + g(v) - 1, 0)) (6) 

Recall that if g(u) = u is the identity on [0, 1], we get just the basis of 
Pykacz's approach. 

Of course, in general the fuzzy union U induced by S need not coincide 
with the usual join v induced by the intrinsic partial order of fuzzy subsets. 
This is ensured only if no nontrivial weak empty set is contained in the 
system we are dealing with, i.e., if A <- A c implies A - 0x. Recall that A -< 
A C is equivalent to A(x) <- g- l ( l /2)  for all x ~ X. All the above facts are 
summarized in the following theorem. For a detailed proof see Mesiar (1994). 

Theorem 2. A system ~ C ~(X) of fuzzy subsets of X equipped with 
pointwise-defined fuzzy connectives is a quantum logic in the traditional 
sense if and only if e, S, and T are generated by a common generator g as 
in (6) and the following four properties are fulfilled: 

(GF1) 0x E ~ .  
(GF2) A E ~ F ~ A  c E W. 
(GF3) A e W , A - - A  c ~ A  = 0x. 
(GF4) {An) C ~ ,  An A Am = 0x whenever n :/: m ~ U An ~ ]; .  [] 

The system ~V fulfilling (GF1)-(GF4) with fuzzy connectives generated 
by a generator g is called a g-fuzzy quantum logic. Recall that even here we 
can apply a generalized Mgczyfiski theorem replacing the additivity of a state 
by a pseudoadditivity (Mesiar, 1993a), i.e., 

a • b ~ s ( a  v b )  = S ( s ( a ) ,  s ( b ) )  = g-t(min(1, g(s(a)) + g(s(b)))) 
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The above results show that, up to an isomorphism given by a generator g, 
Pykacz's results cover the problem of quantum logics of fuzzy sets. 

4. FUZZY QUANTUM LOGICS "DO NOT EXIST" 

The nature of fuzzy structures is pointwise. Take an arbitrary nonempty 
crisp subset Y C X. Then the restriction of a given fuzzy structure on • to 
Y is again a fuzzy structure of the same type (e.g., fuzzy ~-algebras, T-tribes, 
generated tribes, etc.). Looking at a fuzzy quantum logic V" from this point 
of view (i.e., neglecting the global properties of underlying elements) leads 
us to the following conclusion: for each x ~ X, the restriction Y(x) of ~F to 
the singleton Y = {x} should be again a fuzzy quantum logic. But then the 
elements of ~V(x) are real numbers from the unit interval, i.e., Y(x) is linearly 
ordered and due to the condition (F3), the only element u ~ ~V(x) such that 
u -- u', i.e., u -< 1/2, is u = 0. Consequently V'(x) -- {0, 1} for all x ~ X, 
which means that for each A ~ ~f and x ~ X one has A(x) ~ {0, 1 }. But 
then a fuzzy quantum logic contains only crisp elements! In other words, no 
fuzzy quantum logic exists. Of course, this is only speaking in a certain 
philosophical sense. From the physical point of view, the restriction of a 
fuzzy quantum logic defined on a universe X to a subuniverse Y corresponds 
to the restriction of the state space and hence there is no physical reason to 
preserve the quantum properties (e.g., that Y is an ordering set of states). 
Hence the above-investigated structures of fuzzy sets have a real meaning 
and the only conclusion of our considerations is the following one: do not 
use the notion "fuzzy quantum structures," such as fuzzy quantum logics, 
but use preferably the notion "quantum structures of fuzzy sets," e.g., the 
quantum logics of fuzzy sets. 
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